Functional Analysis

Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 9

Orthonormal basis

math.uwb.edu.pl/~zaf/kwasniewski/teaching

H – fixed Hilbert space.

Def: A system of vectors $\{e_i\}_{i\in I}\subseteq H$ is called

- orthogonal, if $e_i \perp e_i$ for $i \neq j$ (i.e. $\langle e_i, e_i \rangle = 0$, $i \neq j$).
- orthonormal, if $e_i \perp e_j$, for $i \neq j$, and $||e_i|| = 1$, for all i, that is

$$\langle e_i, e_j \rangle = \delta_{i,j} := \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases}$$
 $i, j \in I.$

Every orthogonal system of nonzero vectors $\{u_i\}_{i\in I}$ can be normalized to an orthonormal system $\{e_i\}_{i\in I}$ by putting $e_i:=\frac{u_i}{\|u_i\|}$:

$$\langle e_i, e_j \rangle = \left\langle \frac{u_i}{\|u_i\|}, \frac{u_j}{\|u_j\|} \right\rangle = \frac{\langle u_i, u_j \rangle}{\|u_i\| \|u_j\|} = \delta_{i,j} \cdot \frac{\langle u_i, u_i \rangle}{\|u_i\| \|u_i\|} = \delta_{i,j}.$$

Prop. (Gram-Schmidt orthogonalization)

If $\{x_i\}_{i=1}^n\subseteq H$ are linearly independentnt and $M=\text{lin}\{x_1,...,x_n\}$, then

$$u_1 := x_1, \quad u_2 := x_2 - P_{u_1} x_2, \quad ..., \quad u_n := x_n - \sum_{i=1}^{n-1} P_{u_i} x_n$$
 form an orthogonal system $\{u_i\}_{i=1}^n$ such that $M = \text{lin}\{u_1, ..., u_n\}$.

Prop. If $M = \text{lin}\{e_1,...,e_n\}$, where $\{e_i\}_{i=1}^n$ is an orthogonal system, then

$$P_M x = \sum_{i=1}^n \langle x, e_i \rangle e_i,$$
 for every $x \in H$.

Moreover, $||P_M x||^2 = \sum_{i=1}^n |\langle x, e_i \rangle|^2$ dla $x \in H$.

Proof: Let $x \in H$. Then $P_M x = \sum_{i=1}^n \lambda_i e_i$, $\{\lambda_i\}_{i=1}^n \subseteq \mathbb{F}$, and

$$\langle x, e_i \rangle \stackrel{e_i \in M}{=\!\!\!=\!\!\!=} \langle x, P_M e_i \rangle \stackrel{P_M = P_M^*}{=\!\!\!=\!\!\!=} \langle P_M x, e_i \rangle = \langle \sum_{j=1}^n \lambda_j e_j, e_i \rangle$$

$$= \sum_{j=1}^n \lambda_j \langle e_j, e_i \rangle \stackrel{\langle e_j, e_i \rangle = \delta_{i,j}}{=\!\!\!=\!\!\!=} \lambda_i.$$

Hence $P_{M}x=\sum_{i=1}^{n}\langle x,e_{i}
angle e_{i}$ and

$$||P_{MX}||^{2} = \langle \sum_{i=1}^{n} \lambda_{i} e_{i}, \sum_{j=1}^{n} \lambda_{j} e_{j} \rangle = \sum_{i,j=1}^{n} \lambda_{i} \overline{\lambda}_{j} \langle e_{i}, e_{j} \rangle \stackrel{\langle e_{j}, e_{i} \rangle = \delta_{i,j}}{=} \sum_{i=1}^{n} |\lambda_{i}|^{2}$$
$$= \sum_{i=1}^{n} |\langle x, e_{i} \rangle|^{2}.$$

Cor. (Bessel inequality)

For any orthonormal system $\{e_i\}_{i\in I}\subseteq H$ we have

$$\sum_{i\in I} |\langle x, e_i \rangle|^2 \leqslant ||x||^2, \qquad x \in H.$$

Proof: Let $A \subseteq I$ be finite and let $M = lin\{e_i : i \in A\}$ be the linear space spanned by $\{e_i\}_{i \in A}$. Then

$$\sum_{i \in A} |\langle x, e_i \rangle|^2 \stackrel{Prop}{=\!\!\!=} \|P_M x\|^2 \stackrel{\|P_M\| \leqslant 1}{\leqslant} \|x\|^2.$$

Hence
$$\sum_{i \in I} |\langle x, e_i \rangle|^2 = \sup_{A \subseteq I \atop \text{finite}} \sum_{i \in A} |\langle x, e_i \rangle|^2 \leqslant ||x||^2$$
.

Def. For a family of vectors $\{x_i\}_{i\in I}$ in a normed space X, the series $\sum_{i\in I} x_i$ is **(unconditionally) convergent** to a vector $x\in X$, if for every $\varepsilon>0$ there is finite $K\subseteq I$ such that for any finite $J\subseteq I$ containing K we have $\|\sum_{i\in J} x_i - x\| < \varepsilon$. We then write $x=\sum_{i\in I} x_i$.

Def. An orthonormal basis of a Hilbert space H is an orthonormal system $\{e_i\}_{i\in I}$, which is maximal, i.e. there is no $e\in H$ such that the system $\{e_i\}_{i\in I}\cup\{e\}$ is orthonormal.

Prop. Every orthonormal system can be extended to an orthonormal basis. In particular, every Hilbert space has an orthonormal basis.

Proof: This follows from the Kuratowski-Zorn Lemma. Indeed, let $\{e_i\}_{i\in I}\subseteq H$ be a fixed orthonormal system. Let \mathcal{P} be the family of all orthonormal systems (Kuratowski) (Zorn $\{e_i'\}_{i\in I'}\subseteq H$ that extend $\{e_i\}_{i\in I}$, that is $\{e_i:i\in I\}\subseteq \{e_i':i\in I'\}$. This is a partially ordered set with respect to the inclusion relation. Moreover, every family of orthonormal systems $\mathcal{C}\subseteq \mathcal{P}$, which is linearly ordered (i.e. if $u,u'\in \mathcal{C}$, then either $u\subseteq u'$ or $u'\subseteq u$) has an upper bound $\bigcup_{u\in \mathcal{C}} u$. Therefore, by the Kuratowski–Zorn Lemma, there exists a maximal element in \mathcal{P} .

Thm. (Characterizations of the orthonormal basis)

Let $\{e_i\}_{i\in I}\subseteq H$ be an orthonormal system in space Hilbert H. The following conditions are equivalent:

- ① $\{e_i\}_{i\in I}$ is an **orthonormal basis**, i.e. $\{e_i\}_{i\in I}$ is a maximal orthonormal system.
- ② the family $\{e_i\}_{i\in I}$ is linearly dense in H, i.e. $\overline{\lim\{e_i:i\in I\}}=H$.
- The for every $x \in H$, $||x||^2 = \sum_{i \in I} |\langle x, e_i \rangle|^2$, i.e. Bessel's inequality becomes the equality (called **Parseval's equality**).
- **9** Every $x \in H$ is of the form $x = \sum_{i \in I} \lambda_i e_i$, where $\lambda_i \in \mathbb{F}$, $i \in I$.

The numbers $\{\lambda_i\}_{i\in I}\subseteq \mathbb{F}$ in (4) are uniquely deteremined by x, namely $\lambda_i=\langle x,e_i\rangle$ for $i\in I$. We call these numbers **Fourier coefficients** of x in basis $\{e_i\}_{i\in I}$.

Proof: Note that if $x = \sum_{i \in I} \lambda_i e_i$ for some $\lambda_i \in \mathbb{F}$, then

$$\langle x, e_i \rangle = \langle \sum_{i=1}^{n} \lambda_j e_j, e_i \rangle = \sum_{i=1}^{n} \lambda_j \langle e_j, e_i \rangle = \sum_{i=1}^{n} \lambda_j \delta_{i,j} = \lambda_i, \qquad i \in I.$$

This proves the last part of the assertion.

- (1) \Rightarrow (2). Let $M:=\overline{\lim\{e_i:i\in I\}}$ be a closed subspace of H generated by $\{e_i\}_{i\in I}$. If $M\neq H$, then $M^\perp\neq\{0\}$, so there is $e\in M^\perp$ with $\|e\|=1$. Then $\{e_i\}_{i\in I}\cup\{e\}$ is an orthonormal system, which contradicts maximality of $\{e_i\}_{i\in I}$. Hence M=H.
- (2) \Rightarrow (3). Let $x \in H$. Fix $\varepsilon > 0$. By assumption there is finite $A \subseteq I$ and a vector $v \in M := lin\{e_i : i \in A\}$ such that $||x v|| < \varepsilon$. Note that $dim(M) = |A| < \infty$. Thus

$$||x||^{2} = ||P_{M}x + (x - P_{M}x)||^{2} \stackrel{Pitagoras}{=} ||P_{M}x||^{2} + ||x - P_{M}x||^{2}$$

$$\leq ||P_{M}x||^{2} + ||x - v||^{2} \quad \left\{ \begin{array}{l} ||x - P_{M}x|| = \\ \inf_{i \neq j} ||x - y|| \end{array} \right\}$$

$$< ||P_{M}x||^{2} + \varepsilon^{2} \stackrel{\text{wz\'or}}{=} \stackrel{\text{na}}{=} P_{m} \sum_{i \in A} |\langle x, e_{i} \rangle|^{2} + \varepsilon^{2}$$

$$\leq \sum_{i \in I} |\langle x, e_{i} \rangle|^{2} + \varepsilon^{2}.$$

Passing with ε to zero we get that $||x||^2 \leqslant \sum_{i \in I} |\langle x, e_i \rangle|^2$. This is the opposite of Bessel's inequality. Hence the equality.

(3) \Rightarrow (4). Let $x \in H$ and $\varepsilon > 0$. The series $||x||^2 = \sum_{i \in I} |\langle x, e_i \rangle|^2$ converges (by Parseval's identity). Hence there is a finite $K \subseteq I$ such that for every finite $J \subseteq I$ disjoint with K we have $\sum_{i \in J} |\langle x, e_i \rangle|^2 < \varepsilon$. Hence

$$\sum_{i\in I\setminus K} |\langle x, e_i\rangle|^2 \leqslant \varepsilon.$$

Take now any finite $J \subseteq I$ containing K. Note that

$$\langle x - \sum_{j \in J} \langle x, e_j \rangle e_j, e_i \rangle = \langle x, e_i \rangle - \sum_{j \in J} \langle x, e_i \rangle \delta_{i,j} = \langle x, e_i \rangle \cdot 1_{I \setminus J}(i).$$

Therefore, applying Parseval's formula to the vector $x - \sum_{j \in J} \langle x, e_j \rangle e_j$

$$\|x - \sum_{j \in J} \langle x, e_j \rangle e_j\|^2 = \sum_{i \in I \setminus J} |\langle x, e_i \rangle|^2 \leqslant \sum_{i \in I \setminus K} |\langle x, e_i \rangle|^2 \leqslant \varepsilon.$$

This shows that $x = \sum_{i \in I} \langle x, e_i \rangle e_i$.

 $(4)\Rightarrow (1)$. Let's assume ad absurdum that there is $e\in H$ such that the system $\{e_i\}_{i\in I}\cup\{e\}$ is orthonormal. By assumption $e=\sum_{i\in I}\lambda_ie_i$ for $\lambda_i\in\mathbb{F},\ i\in I.$ But $\lambda_i=\langle e,e_i\rangle=0$ for every $i\in I.$ Hence e=0, which leads to the contradiction with the condition $\|e\|=1$.

Cor. If $\{e_i\}_{i\in I}$ is an orthonormal basis of the Hilbert space H, then every $x\in H$ is uniquely determined by its Fourier coefficients $\{\langle x,e_i\rangle\}_{i\in I}$ via the **Fourier series**

$$x = \sum_{i \in I} \langle x, e_i \rangle e_i.$$

Joseph Fourier

Moreover, $||x|| = \sqrt{\sum_{i \in I} |\langle x, e_i \rangle|^2}$ (Parseval's identity).

Ex. (Standard basis in $\ell^2(I)$)

Let I be an arbitrary set. Consider the Hilbert space

$$\ell^2(I) := \{x : I \to \mathbb{F} : \sum_{i \in I} |x(i)|^2 < \infty\}.$$

The inner product on $\ell^2(I)$ is defined by the formula $\langle x,y\rangle=\sum_{i\in I}x(i)\overline{y(i)}$, and the standard orthonormal basis is given by $\{e_i\}_{i\in I}$, where $e_i(j)=\delta_{i,j}$, for $j\in I$. If $I=\mathbb{N}$, then $\ell^2(\mathbb{N})=\ell^2$ and

$$e_n=(\underbrace{0,...,0}_1,1,0,...), \qquad n\in\mathbb{N}.$$

Thm. If $\{e_i\}_{i\in I}$ is an orthonormal basis of the Hilbert space H, then the formula $(Ux)(i) := \langle x, e_i \rangle$ dla $x \in H$, $i \in I$, defines an isometric isomorphism $U: H \to \ell^2(I)$ (unitary operator). Hence $H \cong \ell^2(I)$.

Proof: Parseval's equality implies that $U: H \to \ell^2(I)$ is a well defined isometry. Linearity is straightforward. Surjectivity

Def. Dimension of a Hilbert space H is the cardinality of an orthonormal basis. We denote it by dim(H).

Rem. The dimension of a Hilbert space is well defined, i.e. any two bases of the same space have the same cardinality.

This follows from the Cantor-Bernstein Theorem

Cor. Two Hilbert spaces H and K are isometrically isomorphic if and only if $\dim(H) = \dim(K)$.