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H — fixed Hilbert space.
Def: A system of vectors {e;}ic; C H is called
e orthogonal, if e; L e for i # j (i.e. (e, ) =0, i # ).
e orthonormal, if ¢; L e, for i # j, and ||ej|| = 1, for all /, that is

L, i=/ .
e, ) =0;;:= i,j el
\er &) =00 {0, I # /

Every orthogonal system of nonzero vectors {u;};c; can be normalized
to an orthonormal system {e;};c; by putting e := HZ—'H
e = i YN (wiuj) (uj,uj)
(e &) = <||u,-||’ HUJII> Tull T = 00" Tuglla]] = O
Prop. (Gram-Schmidt orthogonalization)
If {x;}7_, C H are linearly independentnt and M = lin{xi, ..., x»}, then

a . L n—1
U i=x1, hi=x2—Pyx, .., uUpi=xp—>,1; Puxp

form an orthogonal system {u;}? ; such that M = lin{u, ..., un}.




Prop. If M =lin{ey,..., ey}, where {;}7_; is an orthogonal system,

then

n

Pyx = Z(X, ei)ei, for every x € H.
i=1

Moreover, ||Pyx|> = Y7 [(x, &)|* dla x € H.

Proof: Let x € H. Then Pyx =Y ; Niej, {\i}7_; CF, and
(Pux, ei) = (371 Ajejs i)

11)\

<X7 ei> = <X; PMe/> M—

n (e ,e,>
i1 Ailej. )

Hence Pyx = > "7 ;(x, e)e; and

n n n _ (ej,e)=0;;
1Pmx|* = (X Ave, Z e = 30 Aidjlei ) =" >z Ail?
— — ij= i=

Z|<X ei)l?.

i=1



Cor. (Bessel inequality)

For any orthonormal system {e;};c; C H we have
Sl el <P xeH.
icl

Proof: Let A C | be finite and let M = lin{e; : i € A} be the linear
space spanned by {e;}ica. Then

Prog Pum|<1
N [ R N )
€A
Hence 3=, |(x, ei)|* = sup Acl Diealtx e)? <[] u
Inite

Def. For a family of vectors {x;};c/ in a normed space X, the series
> ics Xi is (unconditionally) convergent to a vector x € X, if for
every € > 0 there is finite K C | such that for any finite J C /

containing K we have || > ;. xi — x|| < e. We then write x = ., X;

4/10



Def. An orthonormal basis of a Hilbert space H is an orthonormal
system {e;};c/, which is maximal, i.e. there is no e € H such that the
system {e;}ic; U {e} is orthonormal.

Prop. Every orthonormal system can be extended to an orthonormal
basis. In particular, every Hilbert space has an orthonormal basis.

S

Proof: This follows from the Kuratowski-Zorn Lemma.

Indeed, let {e;};c; C H be a fixed orthonormal system.
Let P be the family of all orthonormal systems
{el}ier C H that extend {ej}ic, thatis {ej:ie 1} C{el:iel'}.
This is a partially ordered set with respect to the inclusion relation.
Moreover, every family of orthonormal systems C C P, which is linearly
ordered (i.e. if u, u’ € C, then either u C v’ or v’ C u) has an upper
bound Uuec u. Therefore, by the Kuratowski—Zorn Lemma, there exists
a maximal element in P. [ |

Kuratowski
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Thm. (Characterizations of the orthonormal basis)

Let {ei}ics € H be an orthonormal system in space Hilbert H. The
following conditions are equivalent:

@ {ei}ies is an orthonormal basis, i.e. {e;};c/ is a maximal
orthonormal system.

@ the family {e;};¢c; is linearly dense in H, i.e. lin{e;: i€ l} =H

@ For every x € H, |[x]|2 =X, |(x, &), i.e. Bessel's inequality
becomes the equality (called Parseval’s equality).

2

@ Every x € His of the form x = >, Aiej, where \; € F, i € .

The numbers {\;}ic; C F in (4) are uniquely deteremined by x, namely
Ai = (x, ) for i € I. We call these numbers Fourier coefficients of x
in basis {e;}ie/.

Proof: Note that if x =), Aiei for some \; € IF, then
X e, Z)\ ej,e, Zx\j<ej,e;) = Z)\jé,-d- = A, i€l
jel jel jel

This proves the last part of the assertion. 6/10



(1)=(2). Let M :=lin{e; : i € I} be a closed subspace of H generated
by {ei}ics. If M # H, then M+ = {0}, so there is e € M~ with

llell = 1. Then {e;}ic; U {e} is an orthonormal system, which
contradicts maximality of {e;};c;. Hence M = H.

(2)=(3). Let x € H. Fix ¢ > 0. By assumption there is finite A C /
and a vector v € M :=lin{e; : i € A} such that || x — v|| < . Note
that dim(M) = |A| < co. Thus

| o Pi tagoras

Ix[1? = [ Pmx + (x = Pux)| 1Pmx|2 + [|x — Pux|®

<Pl + e = vIP - { i )

.
< ||Pmx||? + €2 wzor na Sicallx, ei)|? + &2
< Dier 1(x, e)|? + 2.

Passing with ¢ to zero we get that || x| < Y., |(x, &)|?. This is the
opposite of Bessel's inequality. Hence the equality.
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(3)=(4). Let x € H and £ > 0. The series ||x||2 = 3, |(x, &)
converges (by Parseval’s identity). Hence there is a finite K C / such
that for every finite J C / disjoint with K we have >, [(x, &/)|? < e.

Hence
> [(xe)f <e.
ie\K

Take now any finite J C | containing K. Note that
(x =2 (x,e)ej, ) = (x, &) — > (x,€)d;ij = (x, &) Lpy(i).

jed JjeJ
Therefore, applying Parseval’s formula to the vector x — 3. ,(x, €)e

[[x — ZjeJ<X7 ej>ejH2 = Ziel\J [(x, e)[* < ZieI\K [(x, &)]* <e.

This shows that x =),/ (x, e/)e;.
(4)=-(1). Let's assume ad absurdum that there is e € H such that the
system {e;}ic; U {e} is orthonormal. By assumption e = 3 .., Aje; for
Ai €F, i€l But \;= (e, e)=0forevery i € . Hence e = 0, which
leads to the contradiction with the condition ||e|| = 1. [
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Cor. If {e;};c/ is an orthonormal basis of the Hilbert space H, then
every x € H is uniquely determined by its Fourier coefficients
{(x, ei) }ic/ via the Fourier series

X = Z(x, €i)e;.

iel
Moreover, ||x|| = ‘/Ziel |(x, €}|? (Parseval’s identity).

Ex. (Standard basis in £2(/))
Let / be an arbitrary set. Consider the Hilbert space

) ={x: 1 >F:> ;g Ix(0)]? < oo}
The inner product on £2(/) is defined by the formula
(x,y) = > ic; x(i)y(i), and the standard orthonormal basis is given by
{ei}ies, where €(j) = &;j, for j € I. If | =N, then ¢(?(N) = ¢2 and

Joseph Fourier

en=1(0,..,0,1,0,...), neN.
~—

n—1

o7
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Thm. If {e;};c/ is an orthonormal basis of the Hilbert space H, then
the formula (Ux)(i) := (x, &) dla x € H, i € I, defines an isometric
isomorphism U : H — ¢2(1) (unitary operator). Hence H = ¢2(/).

Proof: Parseval’s equality implies that U : H — ¢2(1) is a S
well defined isometry. Linearity is straightforward. Surjectivity m
Def. Dimension of a Hilbert space H is the cardinality of an
orthonormal basis. We denote it by dim(H).

Rem. The dimension of a Hilbert space is well defined, i.e. any two
bases of the same space have the same cardinality.

| eggi;
i AT
P~

This follows from the( Cantor-Bernstein ) Theorem ( read).

Cor. Two Hilbert spaces H and K are isometrically isomorphic if and
only if dim(H) = dim(K).
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